UNIT -II

PROJ ECTI ONS OF POINTS

INTRODUCTION

(Week - 6)

- In engineering graphics, two principal planes (HP \& VP) are used to get the projection of an object (object may be point, line, plane or solid)
- Points form the basic shape of objects. A point may be considered physically real and can be located by small dot or a small cross.
- A point in space may lie in any one of the four quadrants formed by the two principal planes (HP \& VP).

FOUR QUADRANTS

LOCATI ONS OF A POINT

- When a point lies in the First Quadrant, it will be above HP and in front of VP.
- When a point lies in the Second Quadrant, it will be above HP and behind VP.
- When a point lies in the Third Quadrant, it will be below HP and behind VP.
- When a point lies in the Fourth Quadrant, it will be below HP and in front of VP.

Projections of a Point in First Quadrant

Projections of a Point in Second Quadrant

Projections of a Point in Third Quadrant

Projections of a Point in Fourth Quadrant

Summary of Projection of Points in different Quadrants

Quadrant	Position of the poiits	Front Yiew	$\begin{aligned} & 301 \\ & \text { view } \end{aligned}$	Illustration
First	Above H.P \& infront of V.P	Above XY line	Below XY line	
Second	Above H.P. \& Behind V.P.	Above XY line	Above XY line	

Summary of Projection of Points in different Quadrants (Week 6)

Quadrunt	Position of the points	Front TopFiew view		Illustration
Third	Below H.P. \& Behind V.P.	Below XY line	Above XY line	
Fourth	Below H.P. \& infront of V.P	Below XY line	Below XY line	

QUESTIONS AND SOLUTIONS

1. Draw the projections of a point \mathbf{A} lying on VP \& 55 mm above HP.
2. Draw the projections of a point \mathbf{F} which lies in both the HP \& VP.
3. A point B is 45 mm above HP \& 60 mm behind VP. Draw its projections
4. A point \mathbf{C} is 35 mm below HP \& 25 mm behind VP. Draw its projections
5. A Point \mathbf{D} is 45 mm below HP \& 60 mm infront of VP. Draw its projections

Continue...

1. Mark the projections of the following points on a common reference line keeping the projectors 25 mm apart.
2. A, 25 mm above HP and 35 mm infront of VP.
3. B, 25 mm above HP and 40 mm behind VP.
4. C, 30 mm below HP and 45 mm behind VP.
5. D,30mm below HP \& 40 mm infront of VP.
6. E, 25mm above Hp \& in VP.
7. $\mathrm{F}, 35 \mathrm{~mm}$ below HP \& in VP.
8. G,25mm infront of VP \& in HP.
9. $\mathrm{H}, 20 \mathrm{~mm}$ behind $\mathrm{VP} \&$ in HP.

Continue...

1. Draw the projections of the following points on the same reference line, keeping the projectors 30 mm apart.
2. A, 30 mm above HP and 30 mm infront of VP.
2.B, 40 mm above HP and 30 mm behind VP.
3. C, 45 mm below HP and 30 mm behind VP.
4. $\mathrm{D}, 40 \mathrm{~mm}$ below HP and 30 mm in front of VP.
5. E, 40 mm above HP and in VP.
6. F, 45 mm below HP and in VP.
7. G, 40 mm in front of VP and in HP.
$8 . \mathrm{H}, 45 \mathrm{~mm}$ behind VP and in HP.
9.I, on both HP and VP.

QUESTIONS

1. Draw the projections of a point \mathbf{B} lying on HP \& 55 mm infront of VP.
2. Draw the projections of a point Q lying on VP \& 58 mm above HP.
3. A point S is 35 mm above HP \& 55 mm behind VP. Draw its projections.
4. A point D is 35 mm below HP \& 35 mm behind VP. Draw its projections.
5. A Point M is 60 mm below HP \& 45 mm infront of VP. Draw its projections.

Another type of Question

- Looking at figure write down the position of point P with respect to HP and VP.

CONTINUE...

QUESTION:-

- State the position of the following points and state the quadrant. All dimensions are given in mm .

END

