GE 6152 - ENGINEERING GRAPHICS
 UNIT - II

PROJECTION OF POINTS, LINES AND PLANE SURFACES.

Orthographic projections - Principles - Principle planes - First angle projections - Projection of Points - Projection of Straight lines (only first angle projections) inclined to both the principle planes - Determination of true lengths and true inclinations by rotating line method and traces - Projection of planes (polygonal and circular surfaces) inclined to both the principle planes by rotating line method.

Introduction - Point

A point is an object that which has simply position but no magnitude. It is generally represented by a very small circle or a dot.

Projection

Any kind of representation of an object on a paper, screen or similar surface by drawing is called the projection of the object.

Type of Projection

1. Pictorial projection
2. Orthographic projection

Pictorial Projection

It is the projection that gives three dimensional view of the object. Pictorial projection gives an overall idea about the shape of the solid, but not above the size.

Orthographic Projection

The projection or view obtained on a plane of projection when the projectors are parallel to each other, but perpendicular to the plane of projection, is known as orthographic projection.

Planes of Projection

The plane which is used for the purpose of projection is called plane of projection.

Type of Planes used for Projection

1. Vertical plane - VP
2. Horizontal plane - HP
3. Auxiliary vertical plane - AVP

Vertical Plane - VP

The plane which is vertical is called vertical plane and is denoted by VP. Vertical plane is also known as frontal plane since front view is projected on this plane.

Horizontal Plane - HP

The plane which is horizontal but at right angle to the VP is called horizontal plane.

Auxiliary Vertical Plane - AVP

A plane perpendicular to both VP and HP is known as auxiliary vertical plane. It is denoted by AVP.

Four Quadrants

If the horizontal and vertical planes of projections are assumed to extend beyond the line of interaction, the four dihedral are formed which are designated as first, second, third and fourth angles or four quadrants.

Figure - 1: Four Quadrants.
The position of the object placed in any one of the quadrant is described as below:

1. First quadrant - above HP and in-front of VP
2. Second quadrant - above HP and behind of VP
3. Third quadrant - below HP and behind of VP
4. Fourth quadrant - below HP and in-front of VP

Rotation of Planes

When the projections of an object have been made on the various planes, they are bought together on a single sheet of paper by rotating the planes.

The standard practice of rotation of planes is to keep the VP fixed and to rotate HP clockwise away from the object so that they may come in line with VP.

Projection of Points

The projection of a point is the graphical representation of elevation and plan of the given point which is positioned at different quadrants.

Getting Projections of a Point

After keeping the point in space projectors are drawn from it perpendicular to those two principle planes (HP \& VP). The meeting point of the projectors with these principle planes is called projections of the points and still is in pictorial view. To make it in single paper space, always the HP is tilted through 90° in clockwise direction, so that the two principle planes are set in line.

Sign Conventions

1. Point in space is denoted by capital letter.
2. The projection obtained on the HP is called top view or plan and is denoted by lower case letter.
3. The projection obtained on the VP is called front view or elevation and is denoted by lower case letter with a dash.
4. Irrespective of the position of the point in any one of the four quadrants, the observer should be stationed at the right side of the quadrant for the front view.
5. For top view, the observer should be stationed at the tops always.

Hints

1. Lower case letters with a prime should be used to represent the points of elevation.
(viz $a^{\prime}, b^{\prime}, c^{\prime}, \ldots . ., 1$, 2 ', 3 ',)
2. Lower case letters should be used to represent the points of plan.
(viza, b, c,, 1, 2, 3,)
3. Lower case letters with double prime should be used to represent the points of side views. (viza', b', $c^{\prime \prime}, \ldots . ., 1$ ', 2 ', 3 ',)
4. Both the elevation and plan of a point must lie in a line, called projector.

Projections of a Point in the First Quadrant

Figure - 2: Projection of points in first quadrant.
The above figure $\mathbf{- 2 (a)}$ represent the point \mathbf{A} in space in the first quadrant. The height of the point \mathbf{A} with reference to $\mathbf{H P}$ is clearly seen from the front. At this position the image obtained on the VP is called front view or elevation and is denoted as a'. Similarly the distance of \mathbf{A} with reference to VP is clearly seen from the top. At this position the image obtained on the HP is called top view or plan and is denoted as a.

After getting the projections on the HP \& VP the horizontal plane is tilted through 90° in clockwise direction so that both these planes are brought inline and is as shown in figure $\mathbf{- 2 (b)}$. Here the line of intersection of the reference planes HP and VP is denoted as XY and is called reference plane.

Now the plane above $\mathbf{X Y}$ line is the vertical plane and the plane below the $\mathbf{X Y}$ line is horizontal plane. The elevation of the point (\mathbf{a}^{\prime}) is located at a height 15 mm above XY line. The plan of the given point \mathbf{a} is at a distance of 20 mm below $\mathbf{X Y}$ line.

Solved Problem - 1: Draw the projection of a point P, which is 30 mm above HP and 15 $m m$ in-front of $V P$.

Procedure:

1. Draw the line $\mathbf{X Y}$.
2. Draw a projector (line perpendicular to $\mathbf{X Y}$) somewhere at the middle of the $\mathbf{X Y}$ line.
3. Mark point \mathbf{p}^{\prime} on it 30 mm above $\mathbf{X Y}$, which is the front view of the point \mathbf{P}.
4. On the same projector make $\mathbf{p} 15 \mathrm{~mm}$ below $\mathbf{X Y}$ line, which is the top view of the point \mathbf{P}.

Solved Problem - 2:	Point C is 25 mm above HP and in VP. Draw the projection of the point.

Procedure:

1. Draw the line $\mathbf{X Y}$.
2. Draw a projector. Mark point \mathbf{c}^{\prime} on the projector 25 mm above $\mathbf{X Y}$, which is the front view of the point \mathbf{C}.
3. Since the point is on VP the top view of the point \mathbf{C} will lie on the $\mathbf{X Y}$ line itself. So mark \mathbf{c} at the point of intersection of the projector and the XY line.

Solved Problem - 3: Draw the projection of a point B lying on HP and 30 mm in-front of VP.

Procedure:

1. Draw the line $\mathbf{X Y}$.
2. Since the point is lying on HP it won't have any height when it is seen from the front. So mark \mathbf{b}^{\prime} on $\mathbf{X Y}$ line.
3. Mark $\mathbf{b} 30 \mathrm{~mm}$ below $\mathbf{X Y}$ line on the projector from \mathbf{b}^{\prime}, which is the plan of \mathbf{b}.

Solved Problem - 4: Draw the projection of F lying on both HP and VP.

Procedure:

1. Draw the line $\mathbf{X Y}$.
2. Since the point is lying on HP it won't have any height when it is seen from the front. So mark \mathbf{b}^{\prime} on $\mathbf{X Y}$ line.
3. Mark $\mathbf{b} 30 \mathrm{~mm}$ below $\mathbf{X Y}$ line on the projector from \mathbf{b}^{\prime}, which is the plan of \mathbf{B}.

Projections of a Point in the Second Quadrant

Figure - 3: Projection of points in second quadrant.

The above figure $\mathbf{- 3 (a)}$ represent the point \mathbf{B} in space in the second quadrant. The projections can be obtained both on HP and VP by following the steps as for the first quadrant. After getting the projections on the HP and VP the horizontal plane is tilted through 90° in clockwise direction, so that both these planes are brought inline and is as shown in figure $-\mathbf{3}(\mathbf{b})$. Now the planes HP and VP are lying above XY line. So both the elevation and plan will always be above XY line.

Solved Problem - 1:	Draw the projections of a point Q, which is 35 mm above HP and
	15 mm behind VP.

Procedure:

1. Draw the line $\mathbf{X Y}$.
2. Draw a projector somewhere in the middle of the $\mathbf{X Y}$ line.
3. Mark point \mathbf{q}^{\prime} on it 35 mm above $\mathbf{X Y}$, which is the front view of the point \mathbf{Q}.
4. On the same projector mark $\mathbf{q} 15 \mathrm{~mm}$ above $\mathbf{X Y}$ line, which is the top view of the point \mathbf{Q}.

Solved Problem - 2: Draw the projection of a point D 20 mm away from both the reference planes and is in the second quadrant.

Procedure:

1. Draw the line $\mathbf{X Y}$.
2. Draw a projector somewhere in the middle of the $\mathbf{X Y}$ line.
3. Since the point \mathbf{D} is in the second quadrant mark points \mathbf{d} and \mathbf{d} ' 20 mm above $\mathbf{X Y}$, which is the projection of \mathbf{D}.

Projections of a Point in the Third Quadrant

Figure - 4: Projection of points in third quadrant.
The above figure $\mathbf{- 4 (a)}$ represent the point A in space in the third quadrant. The projections can be obtained both on HP and VP by following the steps as for the first quadrant. After getting the projections on the HP and VP the horizontal plane is tilted through 90° in clockwise direction so that both these planes are brought inline and is as shown in figure $-\mathbf{4 (b)}$. Now the plane above XY line is the horizontal plane and the plane below the XY line is vertical plane. The elevation of the point (\mathbf{a}^{\prime}) is located below XY line. The plan (a) is above XY line.

Solved Problem - 1: Draw the projection of a point R, which is 30 mm below HP and 15 mm behind VP.

Procedure:

1. Draw the line $\mathbf{X Y}$.
2. Draw a projector somewhere in the middle of the $\mathbf{X Y}$ line.
3. Mark point \mathbf{r}^{\prime} on it 30 mm above $\mathbf{X Y}$, which is the front view of the point \mathbf{R}.
4. On the same projector mark $\mathbf{r} 15 \mathrm{~mm}$ above $\mathbf{X Y}$ line, which is the top view of the point \mathbf{R}.
Solved Problem - 2: Draw the projection of a point S, which is in HP and 35 mm behind $V P$.

Procedure:

1. Draw the line $\mathbf{X Y}$.
2. Mark \mathbf{s}^{\prime} on $\mathbf{X Y}$, since it is in HP.
3. Draw a projector through \mathbf{s}^{\prime}, and mark $\mathbf{s} 35 \mathrm{~mm}$ above $\mathbf{X Y}$, which is the top view of the point \mathbf{S}.

Projections of a Point in the Fourth Quadrant

Figure - 5: Projection of points in fourth quadrant.

The above figure $\mathbf{- 5 (a)}$ represent the point \mathbf{B} in space in the fourth quadrant. The projections can be obtained both on HP and VP by following the steps as for the first quadrant. After getting the projections on the HP and VP the horizontal plane is tilted through 90° in clockwise direction so that these planes are brought inline and is as shown in figure - 5(b). Now the planes HP and VP are lying below XY line. So both the elevation and plan will always be below the XY line.

```
Solved Problem - 1: Draw the projections of a point B, which is 30 mm below HP and
10 mm in-front of VP.
```


Procedure:

1. Draw the line $\mathbf{X Y}$.
2. Draw a projector somewhere in the middle of the $\mathbf{X Y}$ line.
3. Mark point \mathbf{b}^{\prime} on it 30 mm above $\mathbf{X Y}$, which is the front view of the point \mathbf{B}.
4. On the same projector mark $\mathbf{b} 10 \mathrm{~mm}$ above $\mathbf{X Y}$ line, which is the top view of the point \mathbf{B}.

Solved Problem - 2: Draw the projection of a point C 30 mm away from both the reference planes and is in the fourth quadrant.

Procedure:

1. Draw the line $\mathbf{X Y}$.
2. Draw a projector somewhere in the middle of the $\mathbf{X Y}$ line.
3. On it mark point's \mathbf{c} and $\mathbf{c}^{\prime} 30 \mathrm{~mm}$ below $\mathbf{X Y}$, which is the projection of \mathbf{C}.
[^0]| Exercise - 2: | Projections of various points are given in the below mentioned |
| :--- | :--- |
| | figure - 6. State their positions with respects to the reference planes. |

Figure - 6: Projection of various points.

PROJECTION OF STRAIGHT LINES

Introduction - Straight Line

A straight line is an entity which defined as the shortest distance between two points. It has two end points. It has length but negligible thickness.

Projection of Straight Lines

Drawing the front view, top view of a straight line is called projections of a straight line.

Position of Straight Lines

The position of a straight line in space can be described with respect to the two reference planes (VP and HP) are as follows.

1. Line parallel to both HP and VP.
2. Line parallel to one plane and perpendicular to other.

- Line parallel to HP and perpendicular to VP.
- Line parallel to VP and perpendicular to HP.

3. Line parallel to one plane and inclined to other.

- Line parallel to HP and inclined to VP.
- Line parallel to VP and inclined to HP.

4. Line contained by one or both the planes.

- Line in HP.
- Line in VP.
- Line both in HP and VP.

5. Line inclined to both the planes.

- Line inclined to both the planes with one end on XY plane.

1. LINE PARALLEL TO BOTH HP AND VP

When the straight line $\mathbf{A B}$ is parallel to both, then the distance of the end points are equally away from HP and VP. From the below mentioned figure - 1, the front view or elevation is denoted as $\mathbf{a}^{\prime} \mathbf{b}$ '. The top view or plan is denoted as $\mathbf{a b}$. The length of the elevation and plan are equal to the true length of line $\mathbf{A B}$ and parallel to reference line $\mathbf{X Y}$.

Figure - 1: Straight line parallel to both HP and VP.
2. LINE PARALLEL TO ONE PLANE AND PERPENDICULAR TO OTHER

| Rule $-2:$ | A straight line will represent at a point in that plane to which plane it is
 perpendicular. |
| :--- | :--- | :--- |

Line AB 25 mm parallel to VP and perpendicular to HP. (Refer figure - 2 (a) (i))
Line CD 21 mm parallel to HP and perpendicular to VP. (Refer figure - 2 (a) (ii))

Figure - 2: Straight line parallel to one plane and perpendicular to other.
Figure (a) - Parallel to VP and perpendicular Figure (b) - Parallel to HP and perpendicular to $H P$. to VP.

The above figure - 2 shows the line $\mathbf{A B}$ parallel to VP and perpendicular to HP. So the elevation $\mathbf{a}^{\prime} \mathbf{b} \mathbf{b}$ is a line perpendicular to $\mathbf{X Y}$ showing true length of $\mathbf{A B}$. In the plan, both the ends of the line $\mathbf{A B}$ are merged together and seen as a point with the visible one point which hides the other point. The rule to find the hidden point is that, the points that are nearer to $\mathbf{X Y}$ line in one view are not visible in other. So the point \mathbf{b} is hidden here.

The line CD is parallel to HP and perpendicular to VP. So the plan of the line $\mathbf{C D}$ is the line $\mathbf{c d}$ perpendicular to XY showing the true length and the front view of the line $\mathbf{C D}$ is a point $\mathbf{c}^{\prime}\left(\mathbf{d}^{\prime}\right)$.

3. LINE PARALLEL TO ONE PLANE AND INCLINED TO OTHER PLANE

When a straight line is inclined to one plane and parallel to the other, its projection on the plane to which it is inclined will be a straight line, shorter than its true length but parallel to XY line. Simultaneously its projection on the plane to which it is parallel will be a straight line equal to its true length and inclined to XY line at its true inclination.

Figure - 3: Straight line parallel to one plane and inclined to other.

Figure (a) - Parallel to VP and inclined to HP.

Figure (b) - Parallel to HP and inclined to $V P$.
a) Straight line inclined to HP and parallel to VP: From the above mentioned figure - 3 (a), the straight line $\mathbf{A B}$ is inclined at an angle $\boldsymbol{\theta}$ to $\mathbf{H P}$ and parallel to $\mathbf{V P}$. Its front view $\mathbf{a}^{\prime} \mathbf{b} \mathbf{b}^{\prime}$ is
equal to the straight line $\mathbf{A B}$ and its inclination $\boldsymbol{\theta}$ is in its true form. Its top view $\mathbf{a b}$ is shorter than the line $\mathbf{A B}$.
b) Straight line inclined to VP and parallel to HP: Considering figure - 3 (b), the straight line $\mathbf{C D}$ is inclined at an angle $\boldsymbol{\theta}$ to VP and its inclination is in its true magnitude. Its front view $\mathbf{c}^{\prime} \mathbf{d}^{\prime}$ is shorter than the line $\mathbf{C D}$. Its top view $\mathbf{c d}$ is equal to the straight line $\mathbf{C D}$ and its inclination $\boldsymbol{\theta}$ is in true form.

4. LINE CONTAINED BY ONE OR BOTH THE PLANES

| Rule $-\mathbf{3 :}$ | A straight line will represent its true length in that plane to which plane the
 straight line is contained. |
| :--- | :--- | :--- |

Case - 1:

Line AB is in the VP and inclined to HP: Its elevation a'b' shows the true length and true inclination and the plan $\mathbf{a b}$ is shorter than the line $\mathbf{A B}$ and on the $\mathbf{X Y}$ line. (Refer Figure $(b)-i$)

Figure - 4: Straight line contained by one or both the planes.
Figure (a) - Position of lines in three cases. Figure (b) - Projection of lines in three cases.

Case - 2:

Line CD is in the HP and inclined to VP: Its plan cd shows the true length and true inclination and the elevation $\mathbf{c}^{\prime} \mathbf{d}^{\prime}$ is shorter than the line $\mathbf{C D}$ and on XY line. (Refer Figure (b) - ii)

Case - 3:

Line EF is both in HP and VP: Here both the elevation $\mathbf{e}^{\prime} \mathbf{f}^{\prime}$ and the plan ef coincides on XY. (Refer Figure (b) - iii)

5. LINE INCLINED TO BOTH THE REFERENCE PLANES

The figure -5 , shows the straight line $\mathbf{A B}$ inclined to both HP and VP. The elevation and plan of the inclined line both HP and VP are duly projected and shown in the same figure. Here both the elevation / front view $\mathbf{a}^{\prime} \mathbf{b}$ ' and top view / plan $\mathbf{a b}$ are inclined to XY line and are shorter than the true length.

Figure - 5: Straight line inclined to both the reference planes.

Note:

\Rightarrow If the line is parallel to a reference plane then the projection obtained on it gives true length and true inclination.
\Rightarrow When a line is inclined to both the HP and VP, then the projections are shorter than the true length and the inclination angles with XY line are greater than the true inclination of the line. The greater angles with the $\mathbf{X Y}$ line are called apparent angles.
\Rightarrow When a line is inclined to both the HP and VP it will neither show its true length nor true inclination in top view or front view and is termed as oblique line.

THE NOMENCLATURE OF THE VARIOUS PARAMETERS WHEN THE LINE IS

INCLINED TO BOTH HP AND VP

[Rotating Line Method]

Figure - 6: Straight line inclined to both HP and VP.

Note:

\Rightarrow The apparent inclination of the elevation / front view (denoted as $\boldsymbol{\alpha}$) is always greater than the true inclination of the line with $\mathbf{H P}(\boldsymbol{\theta})$.
\Rightarrow The apparent inclination of the plan / top view (denoted as $\boldsymbol{\beta}$) is always greater than the true inclination of the line with VP ($\boldsymbol{\phi}$).

SUMMARY FOR PROJECTION OF LINES

SL.NO	POSITION OF LINE	FRONT VIEW OR ELEVATION	$\begin{gathered} \text { TOP VIEW } \\ \text { OR } \\ \text { PLAN } \\ \hline \end{gathered}$
1.	Line parallel to HP and VP	True length and parallel to XY	True length and parallel to XY
2.	Line perpendicular to HP and parallel to VP	True length perpendicular to $\mathbf{X Y}$ and	Point
3.	Line perpendicular to VP and parallel to HP	Point	True length and perpendicular to $\mathbf{X Y}$
4.	Line in HP and VP	True length and coincide on XY	True length and coincide at XY
5.	Line in HP and inclined at VP	Shorter than true length and lies in XY	True length and inclined at $\boldsymbol{\theta}^{\circ}$ to $\mathbf{X Y}$
6.	Line in VP and inclined at $\boldsymbol{\theta}^{\circ}$ to $\mathbf{H P}$	True length and inclined at $\boldsymbol{\theta}^{\circ}$ to $\mathbf{X Y}$	Shorter than true length and lies in $\mathbf{X Y}$
7.	Line parallel to HP and inclined at $\boldsymbol{\theta}^{\circ}$ to $\mathbf{V P}$	True length and inclined at $\boldsymbol{\theta}^{\circ}$ to at $\mathbf{X Y}$	Shorter than true length and parallel to $\mathbf{X Y}$
8.	Line inclined to HP at $\boldsymbol{\phi}^{\circ}$ and parallel to VP	Shorter than true length and parallel to XY	True length and inclined at $\boldsymbol{\phi}^{\circ}$ to $\mathbf{X Y}$
9.	Line inclined $\boldsymbol{\theta}^{\circ}$ to VP and inclined at $\boldsymbol{\phi}^{\circ}$ to HP	Neither true length not true inclination	Neither true length not true inclination
10.	Line contained by plane perpendicular to HP and VP	Shorter than true length and perpendicular to $\mathbf{X Y}$	Shorter than true length and perpendicular XY

Table - 1: Summary for projection of lines.

Rule -4: $\quad \begin{aligned} & \text { When the end positions of a straight line are not given in problem, then for }\end{aligned}$ solving, the problem, one end of the line should be taken on XY line.

The line AB 60 mm long has its end a in both the $\mathbf{H P}$ and $\mathbf{V P}$. It is inclined at 45° to $\mathbf{H P} 30^{\circ}$ to VP. Draw the projections of the line $\mathbf{A B}$ and determine its traces.

If the end positions of a straight line are not mentioned in the problem, then one end point of the line may be assumed to be either in HP or in VP or both. In this case, one end of the line has been taken in both the planes i.e., on XY line. Here neither its top view nor its front view will show the true and inclination of the line.

Figure - 7: Straight line inclined to both the planes with one end on XY plane.

Solved Problems - 1: One end P of a line PQ, 55 mm long is 35 mm in-front of VP and 25 mm above the HP. The line is inclined at 40° to HP and 30° to $V P$. Draw the projections of PQ.

Figure - 8: Straight line inclined to both the planes.

1. Locate the top view \mathbf{p} of $\mathbf{P}, 35 \mathrm{~mm}$ below $\mathbf{X Y}$ and front view $\mathbf{p}, 25 \mathrm{~mm}$ above $\mathbf{X Y}$.
2. It is next required to find the length of the top view and front view of the line and also the paths of the end \mathbf{Q} in the top view and front view.
3. The line is first assumed to be parallel to the VP and inclined at 40° to the HP.
4. Then, the front view will have the true length and will be inclined at 40° to $\mathbf{X Y}$. Accordingly, draw pqı' inclined at 40° to $\mathbf{X Y}$ and make $\mathbf{p}^{\prime} \mathbf{q}_{1}{ }^{\prime}$ equal to 55 mm .
5. Project \mathbf{q}_{1} ' to $\mathbf{q}_{\mathbf{1}}$ on the line drawn parallel to $\mathbf{X Y}$ through \mathbf{p}. Then, $\mathbf{p q}_{\mathbf{1}}$ will give the length of top view of the line.
6. Next, the line assumed to be parallel to HP and inclined at 30° to VP. Then, the top view will have the true length and will be inclined at 30° to $\mathbf{X Y}$. Draw $\mathbf{p q} \mathbf{q}_{2}$ inclined at 30° to $\mathbf{X Y}$ and make $\mathbf{p q}_{2}$ equal to 55 mm .
7. Project $\mathbf{q}_{\mathbf{2}}$ to $\mathbf{q}_{\mathbf{2}}{ }^{\prime}$ on the line drawn parallel to $\mathbf{X Y}$ through $\mathbf{p}^{\prime} . \mathbf{p}^{\prime} \mathbf{q}_{\mathbf{2}}{ }^{\prime}$ will represent the length of the front view of the line.
8. Draw a line ab through $\mathbf{q}_{\mathbf{1}}{ }^{\prime}$ parallel to $\mathbf{X Y}$. This line is the path of the end \mathbf{Q} in the front view. Similarly, draw cd through \mathbf{q}_{2} parallel to $\mathbf{X Y}$ to represent the path of \mathbf{Q} in the top view.
9. With \mathbf{p} ' as centre and $\mathbf{p}^{\prime} \mathbf{q}_{\mathbf{2}}{ }^{\prime}$ as radius, draw an arc to cut the path $\mathbf{a b}$ at \mathbf{q}^{\prime}. Draw a line joining \mathbf{p} ' and \mathbf{q} '.
10. Similarly, with p as centre and $\mathbf{p q}_{1}$ as radius, draw an arc meeting the path $\mathbf{c d}$ at \mathbf{q}. Draw a line joining \mathbf{p} and \mathbf{q}.
11. Then, $\mathbf{p q}$ is the required top view and $\mathbf{p}^{\prime} \mathbf{q}^{\prime}$, the front view of the line $\mathbf{P Q}$.

Solved Problems - 2: One end S of a line SR, 70 mm long is in both the HP and the VP. The line is inclined at 40° to the HP and at 35° to the VP. Draw its projections.

Figure -9: Straight line inclined to both the planes with one end on XY plane.

1. Both the top view and front view of \mathbf{S} coincide and lie in $\mathbf{X Y}$. To find the length of the top view, the line is assumed to be parallel to the VP and inclined at 40° to the HP. The line will lie in the VP and hence the top view will lie in XY. Accordingly, draw $\mathbf{s}^{\prime} \mathbf{r}_{\mathbf{1}}{ }^{\prime}$ inclined at 40° to $\mathbf{X Y}$ and to have a length of 70 mm (true length). Project $\mathbf{r}_{\mathbf{1}}{ }^{\prime}$ to $\mathbf{r}_{\mathbf{1}}$ on $\mathbf{X Y}$. Then, $\mathbf{s r}_{1}$ is the length of the top view.
2. Similarly, draw $\mathbf{s r}_{\mathbf{2}}$ inclined at 35° to $\mathbf{X Y}$ to have a length of 70 mm . Project \mathbf{r}_{2} to $\mathbf{r}_{\mathbf{2}}{ }^{\prime}$ on $\mathbf{X Y} . \mathbf{s}^{\mathbf{\prime}} \mathbf{r}_{\mathbf{2}}{ }^{\prime}$ is the length of the front view.
3. Draw ab through $\mathbf{r}_{\mathbf{1}}$ ', parallel to $\mathbf{X Y}$ and $\mathbf{c d}$ through $\mathbf{r}_{\mathbf{2}}$, parallel to $\mathbf{X Y}$. Then, $\mathbf{a b}$ and $\mathbf{c d}$ are the paths of the end \mathbf{R} in the front view and the top view respectively.
4. With \mathbf{s}^{\prime} as center and radius $\mathbf{s}^{\prime} \mathbf{r}_{\mathbf{2}}{ }^{\prime}$, draw an arc to cut $\mathbf{a b}$ at \mathbf{r}^{\prime}. With the same centre and radius $\mathbf{s r}_{\mathbf{1}}$, draw an arc to meet $\mathbf{c d}$ at \mathbf{r}. Draw a line joining \mathbf{s}^{\prime} and $\mathbf{r} \mathbf{r}^{\prime}$. Draw $\mathbf{s r}$. $\mathbf{s r}$ and $\mathbf{s}^{\prime} \mathbf{r}{ }^{\prime}$ are the required projections of the line $\mathbf{S R}$.

Solved Problems - 3: A line NS, 80 mm long has its end N, 10 mm above the HP and 15 mm in-front of the VP. The other end S is 65 mm above the HP and 50 mm in-front of the VP. Draw the projections of the line and find its true inclinations with the HP and VP.

Figure - 10: Straight line inclined to both the planes.
[Here $\theta=42^{\circ} ; \phi=26^{\circ}$]

1. Make the projections of one of the points, say \mathbf{N}. Draw $\mathbf{a b}$ and $\mathbf{c d}$ parallel to $\mathbf{X Y}, 65 \mathrm{~mm}$ above XY and 50 mm below $\mathbf{X Y}$ respectively. $\mathbf{a b}$ and $\mathbf{c d}$ are the loci of the end \mathbf{S}.
2. With \mathbf{n} ' as centre and 80 mm as radius, draw an arc meeting ab at $\mathbf{s}_{\mathbf{1}}$ '. Project $\mathbf{s}_{\mathbf{1}}$ ' to $\mathbf{s}_{\mathbf{1}}$ on the line drawn through \mathbf{n} parallel to $\mathbf{X Y}$.
3. With \mathbf{n} as centre and radius $\mathbf{n s}_{\mathbf{1}}$, draw an arc to cut $\mathbf{c d}$ at \mathbf{s}. Project \mathbf{s} to \mathbf{s}^{\prime} on $\mathbf{a b}$. Join \mathbf{n} 's' and ns. Then, ns and \mathbf{n} 's' are the top view and front view respectively of the line NS. The angle of inclination $\boldsymbol{\theta}$ of $\mathbf{n}^{\prime} \mathbf{s}_{\mathbf{1}}{ }^{\prime}$ with $\mathbf{X Y}$ is the true inclination of the line with the $\mathbf{H P}$.
4. With \mathbf{n} as centre and 80 mm as radius, draw an arc to cut $\mathbf{c d}$ at $\mathbf{s}_{\mathbf{2}}$. Then, the angle $\boldsymbol{\phi}$ that $\mathbf{n s}_{\mathbf{2}}$ makes with the horizontal is the true inclination of the line with the VP.

Solved Problems -4:	A line PF, 65 mm long has its end $P, 15 \mathrm{~mm}$ above the $H P$ and the mP in-front of the VP. It is inclined at 55° to the HP and 35° to

1. Since the sum of inclinations $(\theta+\phi)$ of the line with the principle planes is 90°, the projections of the line lie in the same projector. The projections of \mathbf{P} are marked. The lengths of the top view and front view are determined in the usual manner.
2. The line is first assumed to be parallel to the VP and inclined at 55° to the HP. Draw $\mathbf{p} \mathbf{f}_{\mathbf{1}}{ }^{\prime}$, of length 65 mm inclined at 55° to $\mathbf{X Y}$. Project $\mathbf{f}_{\mathbf{1}}{ }^{\prime}$ to $\mathbf{f}_{\mathbf{1}}$ on a line drawn through \mathbf{p} parallel to $\mathbf{X Y}$. $\mathbf{p f}_{\mathbf{1}}$ is the length of the top view.
3. Next, find the length of the front view assuming the line to be parallel to the HP and inclined at 35° to the VP. For this, draw $\mathbf{p f}_{2}$ of length 65 mm inclined at 35° to $\mathbf{X Y}$. Project $\mathbf{f}_{\mathbf{2}}$ to $\mathbf{f}_{\mathbf{2}}{ }^{\prime}$ on the line drawn through p' parallel to XY.
4. With \mathbf{p} as centre and $\mathbf{p f}_{\mathbf{1}}$ as radius, draw an arc to cut the path through \mathbf{f}_{2} at \mathbf{f}. With \mathbf{p}^{\prime} as centre and $\mathbf{p}^{\prime} \mathbf{f}_{\mathbf{2}}{ }^{\mathbf{\prime}}$ as radius, draw an arc to cut the path through $\mathbf{f}^{\prime}{ }^{\prime}$ at \mathbf{f}^{\prime}.
5. Draw lines $\mathbf{p f}$ and $\mathbf{p}^{\prime} \mathbf{f}$ ' to get the required projections. It is found that $\mathbf{p f}$ and $\mathbf{p} \mathbf{f}$ ' lie in the same projector perpendicular to XY.
Figure - 11: Straight line inclined to both the planes.

Solved Problems -5:	The end P of a line PQ, 70 mm long is 15 mm above the HP and 20
	$m m$ in-front of the VP. Q is 40 mm above the HP. The top view of
the line is inclined at 45° to the VP. Draw the projections of the line	
and its true inclination with the VP and the HP.	

Figure - 12: Straight line inclined to both the planes.

$$
\left[\text { Here } \theta=21^{\circ} ; \phi=41^{\circ}\right]
$$

1. Mark the projections of \mathbf{P}. \mathbf{Q} is 40 mm above the $\mathbf{H P}$. Draw $\mathbf{a b}$ parallel to $\mathbf{X Y}$ at a distance 40 mm above $\mathbf{X Y}$ to represent the path of \mathbf{Q} in the front view.
The line is assumed to be parallel to the VP and inclined to the HP. The front view will show the true length and true inclination with the HP.
2. With \mathbf{p}^{\prime} as centre and true length 70 mm as radius, draw arc to meet the path $\mathbf{a b}$ at $\mathbf{q}_{\mathbf{1}}$ '. $\boldsymbol{\phi}$, the inclination of \mathbf{p} ' $\mathbf{q}_{\mathbf{1}}$ ' with $\mathbf{X Y}$ shows the true inclination of the line with the HP.
3. Project $\mathbf{q}_{1}{ }^{\prime}$ to $\mathbf{q}_{\mathbf{1}}$ on a line drawn through \mathbf{p}, parallel to $\mathbf{X Y}$. $\mathbf{p q} \mathbf{q}_{1}$ gives the length of the top view. Tilt pq \mathbf{p}_{1} by 45° to $\mathbf{p q}$.
4. Project \mathbf{q} to \mathbf{q}^{\prime} on $\mathbf{a b}$. Draw lines $\mathbf{p q}$ and $\mathbf{p}^{\prime} \mathbf{q}^{\prime}$. Then, $\mathbf{p q}$ and $\mathbf{p}^{\prime} \mathbf{q}^{\prime}$ give the top view and front view respectively of PQ.
5. With \mathbf{p} as centre and radius 70 mm , draw an arc to meet $\mathbf{c d}$ at \mathbf{q}_{2}. Then, the inclination $\boldsymbol{\phi}$ of $\mathbf{p q}_{2}$ with the horizontal shows the true inclination of the line with the $\mathbf{V P}$.

Solved Problems - 6: A line EF, 85 mm long has its end E, 25 mm above the HP and 20 mm in-front of the VP. The top and front views of the line have lengths of 55 mm and 70 mm respectively. Draw the projections of the line and find its true inclinations with the VP and HP.

Figure - 13: Straight line inclined to both the planes.

1. Locate \mathbf{e}, the top view of $\mathbf{E}, 20 \mathrm{~mm}$ below $\mathbf{X Y}$ and $\mathbf{e}^{\mathbf{\prime}}$, its front view, 25 mm above $\mathbf{X Y}$.
2. Assume the line to be parallel to the VP first. Its top view will be parallel to $\mathbf{X Y}$ and its front view will have true length. Hence, draw $\mathbf{e f}_{1}$ of length 55 mm (length of the top view) parallel to XY. Draw a projector through $\mathbf{f}_{\mathbf{1}}$. With \mathbf{e} ' as centre and 85 mm (true length) as radius, draw an arc to cut the projector through $\mathbf{f}_{\mathbf{1}}$ at $\mathbf{f}_{\mathbf{1}}{ }^{\prime}$. Then, the inclination $\boldsymbol{\theta}$ of the line $\mathbf{e}^{\mathbf{\prime}} \mathbf{f}_{\mathbf{1}}{ }^{\prime}$ represents the true inclination of the line with the $\mathbf{H P}$.
3. Draw ab, the path of \mathbf{F} in the front view, parallel to $\mathbf{X Y}$ through $\mathbf{f}_{\mathbf{1}}$, Repeat the construction with the front view. Draw $\mathbf{e}^{\prime} \mathbf{f}_{\mathbf{2}}$ ' parallel to $\mathbf{X Y}$ and of length 70 mm (given). Draw a
projector down through $\mathbf{f}_{\mathbf{2}}$ '. With e as centre and radius 85 mm , draw an arc to intersect the projector through $\mathbf{f}_{\mathbf{2}}$, at $\mathbf{f}_{\mathbf{2}}$. The inclination $\boldsymbol{\phi}$ of $\mathbf{e f}_{\mathbf{2}}$ with $\mathbf{X Y}$ shows the true inclination of the line with the VP.
4. Draw cd, the path of \mathbf{F} in the top view.
5. With e as centre and ef \mathbf{f}_{1} as radius, draw an arc to cut $\mathbf{c d}$ at \mathbf{f}. With \mathbf{e}^{\prime} as centre and radius $\mathbf{e}^{\prime} \mathbf{f}_{\mathbf{2}}{ }^{\prime}$, draw arc to meet $\mathbf{a b}$ at \mathbf{f}^{\prime}. Draw lines ef and $\mathbf{e}^{\prime} \mathbf{f}^{\prime}$ as the required projections.
6. Here, $\boldsymbol{\theta}=49^{\circ}$ and $\boldsymbol{\phi}=35^{\circ}$

Solved Problems - 7: A line PQ has its end P, 10 mm above the HP and 20 mm in-front of the VP. The end Q is 35 mm in-front of the VP. The front view of the lines measures 75 mm . The distance between the end projectors is 50 mm. Draw the projections of the line and find its true length and its inclinations with the VP and the HP.

1. Locate the projections \mathbf{p} and \mathbf{p}^{\prime} of \mathbf{P}. Draw a projector perpendicular to $\mathbf{X Y}$ at 50 mm from the projector $\mathbf{p p}{ }^{\prime}$. On this projector, mark \mathbf{q} at a distance of 35 mm below $\mathbf{X Y}$.
2. With \mathbf{p}^{\prime} as centre and 75 mm as radius, draw an arc to cut the projector through \mathbf{q} at $\mathbf{q}^{\prime} \cdot \mathbf{p q}$ and $\mathbf{p} \mathbf{\prime} \mathbf{q}$ ' are the required projections of $\mathbf{P Q}$.
3. Assume the line to be parallel to VP. The top view will be parallel to XY. The front view will show the true length and the true inclination of the line with the HP.
With \mathbf{p} as centre and $\mathbf{p q}$ as radius, draw an arc to cut the line drawn through p parallel to $\mathbf{X Y}$ at $\mathbf{q 1}$. Project $\mathbf{q 1}$ to $\mathbf{q 1} \mathbf{1}^{\prime}$ on $\mathbf{a b}$, the path of \mathbf{Q} in the front view. Then, pq1' shows the true length of the line. The inclination $\boldsymbol{\theta}$ of $\mathbf{p}^{\prime} \mathbf{q}_{\mathbf{1}}{ }^{\prime}$ with $\mathbf{X Y}$ shows the true inclination of the line with the HP.
4. Next, the line is assumed to be parallel to the HP and inclined to VP. With centre \mathbf{p} ' and radius $\mathbf{p}^{\prime} \mathbf{q}^{\prime}$, draw an arc to meet the line drawn through \mathbf{p} ' parallel to $\mathbf{X Y}$ at $\mathbf{q} \mathbf{2}^{\prime}$. Project $\mathbf{q} \mathbf{2}^{\prime}$ to $\mathbf{q} \mathbf{2}$ on $\mathbf{c d}$, the path of \mathbf{Q} in the top view. Then, the inclination $\boldsymbol{\theta}$ of $\mathbf{p q} \mathbf{2}$ with $\mathbf{X Y}$ shows the true inclination of the line with the VP. It can be checked that $\mathbf{p}^{\prime} \mathbf{q}_{\mathbf{1}}{ }^{\prime}=\mathbf{p} \mathbf{q}_{\mathbf{2}}$.
Here, $\boldsymbol{\theta}=45^{\circ}$ and $\boldsymbol{\phi}=11^{\circ}$.

Figure - 14: Straight line inclined to both the planes.

Solved Problems -8: A straight line ST has its end S, 10 mm in-front of the VP and nearer to it. The mid-point m of the line is $\mathbf{5 0} \mathbf{~ m m}$ in-front of the $V P$ and 40 mm above the HP. The front and top views measures 100 mm and 120 mm respectively. Draw the projections of the line. Also find its true length and true inclinations with the HP and the VP.

Figure - 15: Straight line inclined to both the planes.

1. Locate the projections of the mid-point \mathbf{M}. Draw the locus $\mathbf{a b}$ of \mathbf{S} in the top view, 10 mm below XY.
2. With \mathbf{m} as centre and half the length of top view (60 mm) as radius, draw an arc to cut the locus ab at s . Join $\mathbf{s m}$ and produce it to t such that $\mathbf{s m}=\mathbf{m t}$. Through \mathbf{t}, draw $\mathbf{c d}$, parallel to $\mathbf{X Y}$ to denote the locus of \mathbf{T} in the top view.
3. Draw the projectors upwards through \mathbf{s} and \mathbf{t}.
4. With \mathbf{m} ' as centre and half the length of the front view (50 mm) as radius, draw arcs to cut the projector through \mathbf{s} at \mathbf{s}^{\prime} and that through \mathbf{t} at \mathbf{t}^{\prime}.
5. Then, $\mathbf{s t}$ and $\mathbf{s}^{\prime} \mathbf{t}^{\prime}$ are the top and front view of the line respectively.

To find the true length and true inclinations
6. Make the top view parallel to XY such that the line is parallel to the VP. Then, the corresponding front view will give the true length and true inclination with the HP.

Accordingly, with \mathbf{m} as centre and ms as radius draw an arc to meet the horizontal line through \mathbf{m} at $\mathbf{s}_{\mathbf{1}}$. Similarly, with \mathbf{m} as centre and $\mathbf{m t}$ as radius, draw arc to cut the line through \mathbf{m} at $\mathbf{t 1}$.
7. Project $\mathbf{s}_{\mathbf{1}}$ to $\mathbf{s}_{\mathbf{1}}{ }^{\prime}$ on $\mathbf{e f}$, the path of \mathbf{S} in the front view. Similarly, project $\mathbf{t}_{\mathbf{1}}$ to $\mathbf{t}_{\mathbf{1}}{ }^{\prime}$ on $\mathbf{g h}$, the path of \mathbf{T} in the front view. Join $\mathbf{s}_{\mathbf{1}}{ }^{\prime}$ and $\mathbf{t}_{\mathbf{1}}{ }^{\prime}$. Then, $\mathbf{s}_{\mathbf{1}}{ }^{\prime} \mathbf{t}_{\mathbf{1}}{ }^{\prime}$ gives the true length of the line and its inclination $\boldsymbol{\theta}$ with $\mathbf{X Y}$ gives the true inclination of the line with the HP.
8. Make the front view $\mathbf{s}^{\prime} \mathbf{t}^{\prime}$ horizontal. Project $\mathbf{s}_{\mathbf{2}}$ ' to $\mathbf{s}_{\mathbf{2}}$ on $\mathbf{a b}$, the path of \mathbf{S} in the top view. Project $\mathbf{t}_{\mathbf{2}}{ }^{\prime}$ to $\mathbf{t}_{\mathbf{2}}$ on $\mathbf{c d}$, the path of T in the top view. Then, $\mathbf{s}_{\mathbf{2}} \mathbf{t}_{\mathbf{2}}$ also shows the true length and its inclination $\boldsymbol{\phi}$ with the horizontal gives the true inclination of the line with the VP.
9. Here, the true length $\left(\mathbf{s}_{\mathbf{1}}{ }^{\prime} \mathbf{t}_{\mathbf{1}}{ }^{\prime}=\mathbf{s}_{\mathbf{2}} \mathbf{t}_{\mathbf{2}}\right)$ is measured as $128 \mathrm{~mm} . \boldsymbol{\theta}=21^{\circ}$ and $\boldsymbol{\phi}=38^{\circ}$.

> Solved Problems -9: A line $A B$ is 75 mm long. A is 50 mm in-front of VP and 15 mm above HP. B is 15 mm in-front of VP and is above HP. Top view of $A B$ is 50 mm long. Find the front view length and the true inclinations.

Figure - 16: Straight line inclined to both the planes.

1. Mark a' 15 mm above $\mathbf{X Y}$ and a 50 mm below XY.
2. \mathbf{b} is 15 mm in-front of VP. So, draw a horizontal 15 mm below XY to represent the locus of \mathbf{b}. Top view length is 50 mm . Hence a as centre and 50 mm as radius, draw an arc to cut the locus of \mathbf{b} at \mathbf{b}. ab is the top view.
3. Now, the top view is made parallel to $\mathbf{X Y}$. i.e., the line $\mathbf{A B}$ is made parallel to VP. A is fixed, $\boldsymbol{\theta}$ is fixed. So, the front view corresponding to this top view $\mathbf{a b}_{\mathbf{1}}$ gives true length and true inclination $\boldsymbol{\theta}$ with HP. a as centre and ab as radius draw an arc to meet the horizontal drawn through a at $\mathbf{b}_{\mathbf{1}}$. True length is given as 75 mm . Hence, \mathbf{a}^{\prime} as center and 75 mm as radius, draw an arc to intersect the projector drawn from $\mathbf{b}_{\mathbf{1}}$ at $\mathbf{b}_{\mathbf{1}}{ }^{\prime}$. Join $\mathbf{a}^{\prime} \mathbf{b}_{\mathbf{1}}{ }^{\prime}$. Measure $\boldsymbol{\theta}=48^{\circ}$.
4. Draw a horizontal line through $\mathbf{b}_{\mathbf{1}}$ ' to represent the locus of \mathbf{b}^{\prime}. From \mathbf{b} draw a projector to cut the locus of $\mathbf{b}^{\mathbf{\prime}}$ at \mathbf{b}^{\prime}. Join $\mathbf{a}^{\mathbf{\prime}} \mathbf{b}^{\mathbf{\prime}}=66 \mathrm{~mm}$.
5. \mathbf{a} as centre and 75 mm as radius cut a point \mathbf{b}_{2} on the locus of \mathbf{b}. Join $\mathbf{a b}_{2}$. Measure $\boldsymbol{\phi}=28^{\circ}$.
6. Mark $\mathbf{b}_{\mathbf{2}}{ }^{\prime} \cdot \mathbf{b}_{\mathbf{2}}{ }^{\prime}$ should lie on the projector drawn through $\mathbf{b}_{\mathbf{2}}$ as shown in the above figure.

Solved Problems - 10: A line AB 100 mm long has its front view inclined at an angle of 45° to the reference line separating the views. The end A is in VP and 25 mm above HP. The length of the front view is 60 mm . Draw the top view of the line and find the true inclinations of the line with HP and VP.

Figure - 17: Straight line inclined to both the planes.

1. Draw XY. Mark a' 25 mm above $\mathbf{X Y}$ and \mathbf{a} on $\mathbf{X Y}$.
2. $\mathbf{\alpha}$ and $\mathbf{a}^{\prime} \mathbf{b}$ ' are given. Therefore draw $\mathbf{a}^{\prime} \mathbf{b}{ }^{\prime}=60 \mathrm{~mm}$ at $\mathbf{\alpha}=45^{\circ}$ to XY.
3. Draw the locus of \mathbf{b}^{\prime}. \mathbf{a}^{\prime} as centre and true length 100 mm as radius drawn an arc to cut the locus of \mathbf{b}, at $\mathbf{b}_{\mathbf{1}}{ }^{\prime}$. Join $\mathbf{a}^{\prime} \mathbf{b}_{\mathbf{1}}{ }^{\prime}$. Measure $\boldsymbol{\theta}=25^{\circ}$.
4. From $\mathbf{b}_{\mathbf{1}}$ ' draw a projector to cut $\mathbf{X Y}$ at $\mathbf{b}_{\mathbf{1}} \cdot \mathbf{a} \mathbf{b}_{\mathbf{1}}$ is the top view of $\mathbf{a}^{\prime} \mathbf{b}_{1}$.
5. \mathbf{a} as centre and $\mathbf{a b}_{\mathbf{1}}$ as radius draw an arc to cut the projector from \mathbf{b}^{\prime} at b.
6. Join $\mathbf{a b}$ and measure $\mathbf{a b}=90 \mathrm{~mm}$.
7. Draw the locus of \mathbf{b}. a as centre and true length 100 mm as radius draw an arc to cut the locus of \mathbf{b} at $\mathbf{b}_{\mathbf{2}}$.
8. Join ab $\mathbf{a b}_{2}$. Measure $\boldsymbol{\phi}=53^{\circ}$.

Solved Problems - 11: The top view of a line is 65 mm long and is inclined at 30° to the reference line. One end is 20 mm above HP and 10 mm in-front of $V P$. The other end is 60 mm above HP and is in-front of VP. Draw the projections and find the true length of the line and its true inclination to HP and VP.

$\mathbf{T L}=76 \mathrm{~mm}, \boldsymbol{\theta}=32^{\circ}$ and $\boldsymbol{\phi}=25^{\circ}$

Figure - 18: Straight line inclined to both the planes.

$$
\begin{array}{ll}
\text { Solved Problems -12: } & \text { The mid-point of a straight line } A B \text { is } 60 \mathrm{~mm} \text { above } H P \text { and } 50 \mathrm{~mm} \\
\text { in-front of VP. The line measures } 80 \mathrm{~mm} \text { long and inclined at an } \\
\text { angle of } 30^{\circ} \text { to HP and } 45^{\circ} \text { to VP. Draw its projections. }
\end{array}
$$

1. Mark m' 60 mm above $\mathbf{X Y}$ and $\mathbf{m} 50 \mathrm{~mm}$ below $\mathbf{X Y}$.

To obtain the loci of a' and b,
2. To start with, assume the line to be inclined to only one plane, say, HP and made parallel to $\mathbf{V P}$ with reference to mid-point \mathbf{M}.
3. Thus obtain the loci of \mathbf{b}^{\prime} and \mathbf{a}^{\prime}. The whole line is now 50 mm in-front of $\mathbf{V P}$.
4. Top view corresponding to this will be parallel to $\mathbf{X Y}$ and passes through \mathbf{m}.
5. Through \mathbf{m}^{\prime} draw a line $30^{\circ}(\boldsymbol{\theta})$ to $\mathbf{X Y}$.
6. Mark $\mathbf{a}_{\mathbf{1}} \mathbf{}^{\mathbf{\prime}} \mathbf{b}_{\mathbf{1}}{ }^{\prime}=80 \mathrm{~mm}=$ True length on this line such that $\mathbf{a}_{\mathbf{1}}{ }^{\prime} \mathbf{m}^{\prime}=\mathbf{m}^{\mathbf{\prime}} \mathbf{b}_{\mathbf{1}}{ }^{\mathbf{\prime}}=40 \mathrm{~mm}$.
7. From $\mathbf{a}_{\mathbf{1}}{ }^{\prime}$ draw a horizontal to respect the locus of \mathbf{a}^{\prime}.

Figure - 19: Straight line inclined to both the planes.
8. From $\mathbf{b}_{\mathbf{1}}$, draw a horizontal to respect the locus of \mathbf{b} '.
To obtain the loci of a and b
9. Next assume that the line is inclined to VP only and made parallel to HP with reference to M. We can thus obtain the loci of \mathbf{b} and \mathbf{a}.
10. Through m draw a line 45° ($\boldsymbol{\phi}$) to XY.
11. Mark $\mathbf{a}_{2} \mathbf{b}_{\mathbf{2}}=80 \mathrm{~mm}=$ True length on this line such that $\mathbf{a}_{\mathbf{2}} \mathbf{m}=\mathbf{m b}_{\mathbf{2}}=$ 40 mm .
12. From \mathbf{a}_{2} draw a horizontal to respect the locus of \mathbf{a}.
13. From \mathbf{b}_{2} draw \mathbf{a} horizontal to respect the locus of \mathbf{b}.

Consider the projection of right half of the line. Projection of remaining half is symmetrical.
14. Now consider the front view m' $\mathbf{b}_{\mathbf{1}}$ ' $=40 \mathrm{~mm}$ inclined at 30° to $\mathbf{X Y}$.
15. From $\mathbf{b}_{\mathbf{1}}{ }^{\prime}$ draw a projector to cut the horizontal drawn through m at $\mathbf{b}_{\mathbf{1}} . \mathbf{m b}_{\mathbf{1}}$ is the top view length for half of the straight line.
16. With \mathbf{m} as centre and $\mathbf{m b}_{\mathbf{1}}$ as radius drawn an arc to cut the locus of \mathbf{b} at \mathbf{b}.
17. From \mathbf{b} draw a projector to cut the locus of \mathbf{b}^{\prime} at \mathbf{b}^{\prime}.
18. Join $\mathbf{b m}$ and extend this till it touches the locus of \mathbf{a} at \mathbf{a}. ($\mathbf{a m b}$ is the top view of $\mathbf{A B}$)
19. Join $\mathbf{b}^{\prime} \mathbf{m}$ ' and extend this till it touches the locus of \mathbf{a}^{\prime} at $\mathbf{a}^{\prime} .\left(\mathbf{a}^{\prime} \mathbf{m} \mathbf{b}^{\prime} \mathbf{b}\right.$ ' is the front view of $\mathbf{A B})$. Check : Now \mathbf{a}^{\prime} and \mathbf{a} will be on the same projector.

Given front and top views, to find true length and true inclination

Solved Problems - 13: A line LM 70 mm long has its end L 10 mm above HP and 15 mm in-front of VP. Its top and front views measure 60 mm and 40 mm respectively. Draw projections of the line. Find its inclinations with HP and VP.

Mark $\mathbf{l}{ }^{\prime} 10 \mathrm{~mm}$ above $\mathbf{X Y}$ and 15 mm below XY.
To find θ and l'm'

1. From \mathbf{I} draw a line parallel to $\mathbf{X Y}$.
2. Mark $\mathbf{l m}_{\mathbf{1}}=60 \mathrm{~mm}=$ Top view length.
3. From $\mathbf{m}_{\mathbf{1}}$ draw projector.
4. l' as centre and true length 70 mm as radius draw an arc to cut above projector at $\mathbf{m}_{1}{ }^{\prime}$.
5. Join $\mathbf{l}^{\prime} \mathbf{m}_{\mathbf{1}}$. Now measure $\boldsymbol{\theta}=31^{\circ}$.
6. Draw the locus of \mathbf{m} '.
7. l' as centre and front view 40 mm as radius draw an arc to cut the locus of \mathbf{m}^{\prime} at m'.
8. Join l'm'. This is the front view of LM.
To find ϕ and $\mathbf{l m}$
9. Draw $\mathbf{l}^{\prime} \mathbf{m}_{\mathbf{2}}{ }^{\prime}=40 \mathrm{~mm}=$ Front view length and parallel to $\mathbf{X Y}$.
10. From $\mathbf{m}_{\mathbf{2}}{ }^{\prime}$ draw a projector.

Figure - 20: Straight line inclined to both the planes.
11. I as centre and true length 70 mm as radius draw an arc to cut above projector at \mathbf{m}_{2}.
12. Join $\mathbf{l m}_{\mathbf{2}}$. Now measure $\boldsymbol{\phi}=55^{\circ}$.
13. Through $\mathbf{m}_{\mathbf{2}}$ draw the locus of \mathbf{m} '.
14. I as centre and 60 mm as radius draw an arc to cut the locus of \mathbf{m} at \mathbf{m}.
15. Join $\mathbf{~ l m}$. This is the top view of $\mathbf{L M}$.

PROJECTION OF PLANES

Introduction - Projection of Planes

A plane is a two dimensional object having length and breadth only. Its thickness is always neglected. Various shapes of plane figures are considered such as square, rectangle, circle, pentagon, hexagon, etc,

Types of Planes

1. Perpendicular planes which have their surface perpendicular to any one of the reference planes parallel or inclined to the other reference plane.
2. Oblique planes which have their surface inclined to both the reference planes.

Figure - 1: Various types of planes.

Positions of Planes

A plane figure is positioned with reference to the reference planes by referring its surface in the following possible positions.

1. Surface of the plane kept perpendicular to HP and parallel to VP.
2. Surface of the plane kept perpendicular to VP and parallel to HP.
3. Surface of the plane kept perpendicular to both HP and VP.
4. Surface of the plane kept inclined to HP and perpendicular to VP.
5. Surface of the plane kept inclined to VP and perpendicular to HP.
6. Surface of the plane kept inclined to both HP and VP.

1. PROJECTIONS OF A PLANE SURFACE PERPENDICULAR TO HP AND PARALLEL TO VP

Consider a square plane ABCD having its surface perpendicular to HP and parallel to VP as shown in the below figure - 2 (ii).

Figure - 2: Surface of the plane kept perpendicular to HP and parallel to VP.
The front view is projected onto VP which is a square $\mathbf{a}^{\mathbf{\prime}} \mathbf{b}^{\mathbf{\prime}} \mathbf{c}^{\mathbf{\prime}} \mathbf{d}^{\prime}$ having the true shape and size. The top view is projected onto HP and is a line $\mathbf{a b}(\mathbf{c})(\mathbf{d})$ parallel to $\mathbf{X Y}$. The invisible corners are enclosed in ().

The plane surface is extended to meet HP to get the HT which coincides with the top view of the plane. It does not have a VT because the plane is parallel to VP.

The projections and traces obtained are drawn with reference to the XY lines as shown in figure - 2 (iii).

2. PROJECTIONS OF A PLANE SURFACE PERPENDICULAR TO VP AND PARALLEL TO HP

Consider a square plane ABCD having its surface perpendicular to VP and parallel to HP as shown in the below figure - 3 (i).

Figure - 3: Surface of the plane kept perpendicular to VP and parallel to HP.

The top view is projected onto HP which is a square abcd having the true shape and size. The front view is projected onto VP and is a line $\mathbf{a}^{\prime} \mathbf{b}^{\prime}\left(\mathbf{c}^{\mathbf{\prime}}\right)\left(\mathbf{d}^{\prime}\right)$ parallel to $\mathbf{X Y}$. The invisible corners are enclosed in ().

The plane surface is extended to meet VP to get the VT which coincides with the top view of the plane. It does not have a HT because the plane is parallel to HP.

The projections and traces obtained are drawn with reference to the XY lines as shown in figure-3 (ii).

3. PROJECTIONS OF A PLANE SURFACE PERPENDICULAR TO BOTH HP AND

 VPConsider a square plane ABCD having its surface perpendicular to both HP and VP as shown in the below figure - 4 (i).

Figure - 4: Surface of the plane kept perpendicular to both HP and VP.
The front view $\mathbf{b}^{\prime} \mathbf{c}^{\prime}\left(\mathbf{d}^{\prime}\right)\left(\mathbf{a}^{\prime}\right)$ and top view $\mathbf{a b}(\mathbf{c})(\mathbf{d})$ are projected onto $\mathbf{V P}$ and $\mathbf{H P}$ respectively. Both the views are lines perpendicular to the XY line. The true shape of the plane is obtained in the side view which is projected onto a profile plane (pp) which is perpendicular to both HP and VP. In this case, the left side view \mathbf{a} " \mathbf{b} " \mathbf{c} " \mathbf{d} " is obtained on the PP which is at the right side of the given object (plane).

The plane surface is extended to meet HP and VP to get HT and VT which coincides with the top and front views respectively.

The projections and traces obtained are drawn with reference to the $\mathbf{X Y}$ lines as shown in figure - 4 (ii).

4. PROJECTIONS OF A PLANE SURFACE INCLINED TO HP AND PERPENDICULAR TO VP

Consider a square plane $\mathbf{A B C D}$ having its surface inclined at an angle of $\boldsymbol{\theta}$ to $\mathbf{H P}$ and perpendicular VP as shown in figure - 5 (i).

Figure - 5: Surface of the plane kept inclined to HP and perpendicular to VP.

The top view abcd is projected onto HP. It is smaller than the true shape and size. The front view is projected onto VP and is a line $\mathbf{a}^{\prime} \mathbf{b}^{\prime}\left(\mathbf{c}^{\prime}\right)\left(\mathbf{d}^{\prime}\right)$ inclined at an angle $\boldsymbol{\theta}$ to $\mathbf{X Y}$. The invisible corners are enclosed in ().

The plane surface is extended to meet HP to get the HT which is a line perpendicular to $\mathbf{X Y}$. The plane surface is also extended to meet $\mathbf{V P}$ to get the VT which is a line inclined at an angle $\boldsymbol{\theta}$ to XY.

The projections and traces obtained are drawn with reference to the $\mathbf{X Y}$ lines as shown in figure - 5 (ii).

5. PROJECTIONS OF A PLANE SURFACE INCLINED TO VP AND PERPENDICULAR TO HP

Consider a square plane ABCD having its surface inclined at an angle of $\boldsymbol{\phi}$ to VP and perpendicular HP as shown in figure - 6 (i).

Figure - 6: Surface of the plane kept inclined to VP and perpendicular to HP.
The front view $\mathbf{a}^{\prime} \mathbf{b} \mathbf{' c}^{\prime} \mathbf{d} \mathbf{d}$ ' is projected onto $\mathbf{V P}$. It is smaller than the true shape and size. The top view is projected onto HP and is a line $\mathbf{a b}(\mathbf{c})(\mathbf{d})$ inclined at an angle $\boldsymbol{\phi}$ to $\mathbf{X Y}$. The invisible corners are enclosed in ().

The plane surface is extended to meet VP to get the VT which is a line perpendicular to $\mathbf{X Y}$. The plane surface is also extended to meet $\mathbf{H P}$ to get the HT which is a line inclined at an angle $\boldsymbol{\phi}$ to XY.

The projections and traces obtained are drawn with reference to the $\mathbf{X Y}$ lines as shown in figure - 6 (ii).

Solved Problems - 1: A circular plate of diameter 50 mm is resting on HP on a point on the circumference with its surface inclined at 45° to HP and perpendicular to VP. Draw its projections.

Figure - 7: Projection of planes.

To draw the projections

1. Assume that the plate has its surface parallel to HP perpendicular to VP. Draw its top view. It is a circle of radius 25 mm .
2. Project and get the front view which is a line on $\mathbf{X Y}$.
3. As the circle does not have any corners, divide the circle into equal parts, say 8 , in such a way that 8 points are marked on its circumference and project them to the front view.
4. Tilt and reproduce the front view to the given angle 45° with $\mathbf{X Y}$ line, in such a way that the end \mathbf{a}^{\prime} is on $\mathbf{X Y}$ line.
5. Draw horizontal lines from $\mathbf{a}, \mathbf{b}, \mathbf{c}$, etc., and vertical lines from $\mathbf{a}_{\mathbf{1}}{ }^{\prime}, \mathbf{b}_{\mathbf{1}}{ }^{\prime}, \mathbf{c}_{\mathbf{1}}$, etc., to get the required top view $\mathbf{a}_{\mathbf{1}}, \mathbf{b}_{\mathbf{1}}, \mathbf{c}_{\mathbf{1}}$, etc.,
6. Join $\mathbf{a}_{\mathbf{1}}, \mathbf{b}_{\mathbf{1}}, \mathbf{c}_{\mathbf{1}}$, etc., by drawing a smooth curve to get the top view of the circle as an ellipse.

Solved Problems $-2:$	A rectangular plate of side $50 \times 25 \mathrm{~mm}$ is resting on its shorter side on HP and inclined at 30° to VP . Its surfaces is inclined at 60° to

Figure - 8: Projection of planes.

Solution

In this position, the surface of the plate is inclined to both HP and VP; its projections are obtained in three steps.
Step-1:
Assume that the plate has its surface parallel to HP and perpendicular to VP. Draw the top view which will have the true shape and size. Project the front view which will be a line parallel to XY.

Step - 2:
Reproduce the front view tilted to the given angle $\boldsymbol{\theta}$ to $\mathbf{H P}$ and project the top view of the plate which will be smaller that the true shape and size.
Step - 3:
Reproduce the top view by considering the side of the plate that makes the given angle with VP. Project the front view of the plate which is also smaller than the true shape and size.

To draw the projections

1. Draw the top view of the rectangle considering that one of the shorter sides is perpendicular to XY. Then only while tilting the surface to the required angle with HP, this side of the plate will rest on HP.
2. The front view of the plate is projected and obtained on $\mathbf{X Y}$ as a line $\mathbf{a}^{\prime}\left(\mathbf{d}^{\prime}\right) \mathbf{b}^{\prime}\left(\mathbf{c}^{\mathbf{\prime}}\right)$.
3. Tilt and reproduce the front view $\mathbf{a}^{\prime}\left(\mathbf{d}^{\prime}\right) \mathbf{b}^{\prime}\left(\mathbf{c}^{\prime}\right)$ to the given angle 60° with $\mathbf{X Y}$ in such a way that the end $\mathbf{a}^{\prime}\left(\mathbf{d}^{\prime}\right)$ is on XY line.
4. Draw horizontal lines from top view $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d} and vertical lines from front view $\mathbf{a}_{\mathbf{1}}{ }^{\prime}, \mathbf{b}_{\mathbf{1}}{ }^{\prime}$, $\mathbf{c}_{\mathbf{1}}{ }^{\prime}$ and $\mathbf{d}_{\mathbf{1}}{ }^{\prime}$ to get the top view $\mathbf{a}_{\mathbf{1}}, \mathbf{b}_{\mathbf{1}}, \mathbf{c}_{\mathbf{1}}$ and $\mathbf{d}_{\mathbf{1}}$ smaller than the true shape and size.
5. Reproduce the top view $\mathbf{a}_{\mathbf{1}}, \mathbf{b}_{\mathbf{1}}, \mathbf{c}_{\mathbf{1}}$ and $\mathbf{d}_{\mathbf{1}}$ in such a way that the side $\mathbf{a}_{\mathbf{1}} \mathbf{d}_{\mathbf{1}}$ is inclined to the given angle 30° to VP.
6. Draw horizontal lines from $\mathbf{a}_{\mathbf{1}}{ }^{\prime}, \mathbf{b}_{\mathbf{1}}{ }^{\prime}, \mathbf{c}_{\mathbf{1}}{ }^{\prime}$ and $\mathbf{d}_{\mathbf{1}}{ }^{\prime}$ and vertical lines from top view $\mathbf{a}_{\mathbf{2}}, \mathbf{b}_{\mathbf{2}}, \mathbf{c}_{\mathbf{2}}$ and $\mathbf{d}_{\mathbf{2}}$ to get the required front view $\mathbf{a}_{\mathbf{2}}{ }^{\prime}, \mathbf{b}_{\mathbf{2}}{ }^{\prime} \mathbf{c}_{\mathbf{2}}{ }^{\prime}, \mathbf{d}_{\mathbf{2}}{ }^{\prime}$ of the plate smaller than the true shape and size.

Solved Problems - 3: \quad A hexagonal plate of side 30 mm is resting on one of its sides on VP and inclined at 40° to HP. Its surface is inclined at 35° to VP. Draw its projections.

Figure - 9: Projection of planes.

Solution

In this position, the surface of the plate is inclined to both VP and HP; its projections are obtained in three steps.

Step-1:
Assume that the plate has its surface parallel to VP and perpendicular to HP. Draw its front view which will have the true shape and size. Project the top view which will be a line parallel to XY.

Step - 2:
Reproduce the top view tilted to the given angle $\boldsymbol{\phi}$ to VP and project the front view of the plate which will be smaller that the true shape and size.

Step-3:

Reproduce the front view by considering the side of the plate that makes the given angle with HP. Project the front view of the plate which is also smaller than the true shape and size.

To draw the projections

1. Draw the front view of the hexagon considering one of the sides is perpendicular to $\mathbf{X Y}$. Then only while tilting the surface to the required angle with VP, this side of the plate will rest on VP.
2. The top view of the plate is projected and obtained on $\mathbf{X Y}$ as a line.
3. Tilt and reproduce the top view line to the given angle 35° with $\mathbf{X Y}$ in such a way that the end $\mathbf{a}(\mathbf{b})$ is on $\mathbf{X Y}$ line.
4. Draw horizontal lines from front view $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$, etc., and vertical lines from top view $\mathbf{a}_{\mathbf{1}}, \mathbf{b}_{\mathbf{1}}$, \mathbf{c}_{1}, etc., to get the front view of the plate which is smaller than the true shape and size.
5. Reproduce the front view in such a way that the side $\mathbf{a}_{1} \mathbf{b}_{\mathbf{1}}$ is inclined to the given angle 40° to HP.
6. Draw horizontal lines from $\mathbf{a}_{\mathbf{1}}, \mathbf{b}_{\mathbf{1}}, \mathbf{c}_{\mathbf{1}}$, etc., and vertical lines from $\mathbf{a}_{\mathbf{2}}{ }^{\prime}, \mathbf{b}_{\mathbf{2}}, \mathbf{c}_{\mathbf{2}}$, etc., to get the required top view of the hexagonal plate which is smaller than the true shape and size.

> Solved Problems -4: A pentagonal plate 30 mm is resting on HP on one its corners with its surface inclined at 45° to HP. The side opposite to the resting corner is parallel to VP and farther away from it. Draw its projections.

Solution

In this position, the surface of the plate is inclined to both VP and HP; its projections are obtained in three steps.

Step-1:
Assume that the plate has its surface parallel to VP and perpendicular to HP. Draw its front view which will have the true shape ans size. Project the top view which will be a line parallel to XY.

Step - 2:

Reproduce the top view tilted to the given angle $\boldsymbol{\phi}$ to VP and project the front view of the plate which will be smaller that the true shape and size.

Step-3:
Reproduce the front view by considering the side of the plate that makes the given angle with HP. Project the front view of the plate which is also smaller than the true shape and size.

Figure - 10: Projection of planes.

To draw the projections

1. Draw the top view of the pentagonal plate considering one of the sides is perpendicular to $\mathbf{X Y}$. Then only while tilting the surface to the required angle with HP, this side of the plate will rest on HP. Name the corners as $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ and \mathbf{e}.
2. The front view of the plate is projected and obtained on $\mathbf{X Y}$ as a line $\mathbf{a}^{\prime}\left(\mathbf{e}^{\prime}\right) \mathbf{b}^{\prime}\left(\mathbf{d}^{\prime}\right) \mathbf{c}^{\prime}$.
3. Tilt and reproduce the front view line $\mathbf{a}^{\prime}\left(\mathbf{e}^{\prime}\right) \mathbf{b}^{\prime}\left(\mathbf{d}^{\prime}\right) \mathbf{c}^{\prime}$ to the given angle 45° with $\mathbf{X Y}$ in such a way that the corner \mathbf{c}^{\prime} is on $\mathbf{X Y}$ line.
4. Draw horizontal lines from top view $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ and \mathbf{e} and vertical lines from front view $\mathbf{a}_{\mathbf{1}}$ ', $\mathbf{b}_{\mathbf{1}}{ }^{\prime}, \mathbf{c}_{\mathbf{1}}{ }^{\prime}, \mathbf{d}_{\mathbf{1}}{ }^{\prime}$ and $\mathbf{e}_{\mathbf{1}}{ }^{\prime}$ to get the top view $\mathbf{a}_{\mathbf{1}}, \mathbf{b}_{\mathbf{1}}, \mathbf{c}_{\mathbf{1}}, \mathbf{d}_{\mathbf{1}}$ and $\mathbf{e}_{\mathbf{1}}$ of the plate which is smaller than the true shape and size.
5. Reproduce the top view $\mathbf{a}_{\mathbf{1}}, \mathbf{b}_{\mathbf{1}}, \mathbf{c}_{\mathbf{1}}, \mathbf{d}_{\mathbf{1}}$ and $\mathbf{e}_{\mathbf{1}}$ in such a way that the side $\mathbf{e}_{\mathbf{1}} \mathbf{a}_{\mathbf{1}}$ is inclined to VP.
6. Draw horizontal lines from $\mathbf{a}_{1}{ }^{\prime}, \mathbf{b}_{1}{ }^{\prime}, \mathbf{c}_{\mathbf{1}^{\prime}}, \mathbf{d}_{\mathbf{1}}{ }^{\prime}$ and $\mathbf{e}_{\mathbf{1}}{ }^{\prime}$ and vertical lines from $\mathbf{a}_{2}, \mathbf{b}_{\mathbf{2}}, \mathbf{c}_{\mathbf{2}}, \mathbf{d}_{\mathbf{2}}$ and \mathbf{e}_{2} to get the required front view of the pentagonal plate which is also smaller than the true shape and size.

Solved Problems -5: A square plate ABCD of side 30 mm is resting on HP on one of its corners and the diagonal AC inclined at 30° to HP. The diagonal $B D$ of the plate is inclined at 45° to the VP and parallel to the HP. Draw its projections.

Figure - 11: Projection of planes.

Solution

In this position, the surface of the plate is inclined to both VP and HP; its projections are obtained in three steps.

Step - 1:
Assume that the plate has its surface parallel to VP and perpendicular to HP. Draw its front view which will have the true shape and size. Project the top view which will be a line parallel to XY.

Step - 2:
Reproduce the top view tilted to the given angle $\boldsymbol{\phi}$ to VP and project the front view of the plate which will be smaller that the true shape and size.

Step-3:

Reproduce the front view by considering the side of the plate that makes the given angle with HP. Project the front view of the plate which is also smaller than the true shape and size.

To draw the projections

1. Draw the top view of the square plate considering two of the sides are equally inclined to $\mathbf{X Y}$. Then only while tilting the surface to the required angle with HP, a corner of the plate will rest on HP. Name the corners as $\mathbf{a}, \mathbf{b}, \mathbf{c}$, and \mathbf{d}.
2. The front view of the plate is projected and obtained on $\mathbf{X Y}$ as a line $\mathbf{a}^{\prime} \mathbf{b}^{\prime}\left(\mathbf{d}^{\prime}\right) \mathbf{c}^{\prime}$.
3. Tilt and reproduce the front view line $\mathbf{a}^{\prime} \mathbf{b}^{\prime}\left(\mathbf{d}^{\prime}\right) \mathbf{c} \mathbf{c}^{\prime}$ to the given angle 45° with $\mathbf{X Y}$ in such a way that the corner \mathbf{a}^{\prime} is on $\mathbf{X Y}$ line.
4. Draw horizontal lines from top view $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ and vertical lines from front view $\mathbf{a}_{1}{ }^{\prime}, \mathbf{b}_{\mathbf{1}}, \mathbf{c}_{\mathbf{1}}{ }^{\prime}$, $\mathbf{d}_{\mathbf{1}}{ }^{\prime}$ to get the top view $\mathbf{a}_{\mathbf{1}}, \mathbf{b}_{\mathbf{1}}, \mathbf{c}_{\mathbf{1}}, \mathbf{d}_{\mathbf{1}}$ of the plate which is smaller than the true shape and size.
5. Reproduce the top view $\mathbf{a}_{\mathbf{1}}, \mathbf{b}_{\mathbf{1}}, \mathbf{c}_{\mathbf{1}}, \mathbf{d}_{\mathbf{1}}$ in such a way that the side $\mathbf{b}_{\mathbf{1}} \mathbf{d}_{\mathbf{1}}$ is inclined at 30° to VP.
6. Draw horizontal lines from $\mathbf{a}_{\mathbf{1}}{ }^{\prime}, \mathbf{b}_{\mathbf{1}}{ }^{\prime}, \mathbf{c}_{\mathbf{1}}{ }^{\prime}, \mathbf{d}_{\mathbf{1}}{ }^{\prime}$ and vertical lines from $\mathbf{a}_{\mathbf{2}}, \mathbf{b}_{\mathbf{2}}, \mathbf{c}_{\mathbf{2}}, \mathbf{d}_{\mathbf{2}}$ to get the required front view $\mathbf{a}_{\mathbf{2}}{ }^{\prime}, \mathbf{b}_{\mathbf{2}}{ }^{\prime}, \mathbf{c}_{\mathbf{2}}{ }^{\prime}, \mathbf{d}_{\mathbf{2}}{ }^{\prime}$ of the square plate which is also smaller than the true shape and size.

> Solved Problems - 6: A circular plate of diameter 50 mm is resting on the HP on a point on the circumference. Its surface is kept inclined at 45° to HP . Draw its projections when the line representing its diameter and passing through the resting point is inclined at 30° to the $V P$.

Solution

In this position, the surface of the plate is inclined to both VP and HP; its projections are obtained in three steps.

Step - 1:

Assume that the plate has its surface parallel to VP and perpendicular to HP. Draw its front view which will have the true shape and size. Project the top view which will be a line parallel to XY.

Step - 2:

Reproduce the top view tilted to the given angle $\boldsymbol{\phi}$ to $\mathbf{V P}$ and project the front view of the plate which will be smaller that the true shape and size.

Step-3:
Reproduce the front view by considering the side of the plate that makes the given angle with HP. Project the front view of the plate which is also smaller than the true shape and size.

Figure - 12: Projection of planes.
To draw the projections

1. Assume that the circular plate has its surface parallel to HP and perpendicular to VP. Draw its top view which is a circle of radius 25 mm .
2. The front view of the plate is projected and obtained on XY as a line.
3. Divide the circle into 8 equal parts and mark $\mathbf{a}, \mathbf{b}, \mathbf{c}$, etc., and project them to get $\mathbf{a}^{\prime}, \mathbf{b}^{\prime}, \mathbf{c}^{\prime}$, etc., in front view.
4. Tilt and reproduce the front view line a'e' to the given angle 45° with $\mathbf{X Y}$ in such a way that the corner \mathbf{a}^{\prime} is on $\mathbf{X Y}$ line.
5. Draw horizontal lines from top view $\mathbf{a}, \mathbf{b}, \mathbf{c}$, etc., and vertical lines from front view $\mathbf{a}_{\mathbf{1}}{ }^{\prime}, \mathbf{b}_{\mathbf{1}}{ }^{\prime}$, $\mathbf{c}_{\mathbf{1}}$, etc., to get the top view $\mathbf{a}_{\mathbf{1}}, \mathbf{b}_{\mathbf{1}}, \mathbf{c}_{\mathbf{1}}$, etc., and join them to get an ellipse.
6. Mark the true length of the diameter $\mathbf{a}_{2} \mathbf{E}_{\mathbf{2}}$ on the line drawn 30° to $\mathbf{X Y}$. Draw the locus of the end \mathbf{E} of the diameter $\mathbf{a e}$. Mark the diameter $\mathbf{a}_{2} \mathbf{e}_{2}$ on the locus and reproduce the top view $\mathbf{a}_{2}, \mathbf{b}_{\mathbf{2}}, \mathbf{c}_{2}$, etc., and draw the ellipse.
7. Draw horizontal lines from $\mathbf{a}_{\mathbf{1}}^{\prime}, \mathbf{b}_{\mathbf{1}^{\prime}}, \mathbf{c}_{\mathbf{1}}$, etc., and vertical lines from $\mathbf{a}_{\mathbf{2}}, \mathbf{b}_{\mathbf{2}}, \mathbf{c}_{\mathbf{2}}$, etc., to get the required front view $\mathbf{a}_{\mathbf{2}}{ }^{\prime}, \mathbf{b}_{\mathbf{2}}{ }^{\prime}, \mathbf{c}_{\mathbf{2}}{ }^{\prime}$, etc., of the plate.

>	Solved Problems -7: $\quad \begin{array}{l}\text { Draw the projections of a circle of } 70 \text { mm diameter resting on the } \\ \\ \text { HP on a point A of the circumference. The plane is inclined to the } \\ \text { HP such that the top view of it is an ellipse of minor axis } 40 \mathrm{~mm} .\end{array}$
$\begin{array}{l}\text { The top view of the diameter, through the point A is making an } \\ \text { angle of } 45^{\circ} \text { with the VP. Determine the inclination of the plane } \\ \text { with the HP. }\end{array}$	

Answer ; $\theta=55^{\circ}$

Figure - 13: Projection of planes

Figure - 14: Projection of planes

Solved Problems -9: A thin rectangular plate of sides $60 \mathrm{~mm} \times 30 \mathrm{~mm}$ has its shorter side in VP and inclined at 30° to HP. Project its top view, if its front view is square of 30 mm long sides.

Figure - 15: Projection of planes.

1. Front view of the rectangular plate is a square. Hence, its surface must be inclined to VP. Assume the plate to be in VP such that its shorter edge is perpendicular to HP. Draw front view. Project the corresponding top view.
2. In the top view, the line $\mathbf{a b}$ should be so inclined to $\mathbf{X Y}$ that the front view becomes a square.

Solved Problems - 10: Draw the projections of a pentagonal sheet of 26 mm side having its surface inclined at 30° to VP. Its one side is parallel to VP and inclined at 45° to HP.

Figure - 16: Projection of planes.

1. Draw the front view as pentagon such that one side (edge) $\mathbf{p} \mathbf{' q}^{\prime}$ is perpendicular to $\mathbf{X Y}$.
2. Project first top view from front view.
3. Redraw first top view such that it is inclined at 30° to $\mathbf{X Y}$ and get the second top view.
4. Project second front view from second top view and first front view. Reproduce second front view such that $\mathbf{p}_{\mathbf{1}}{ }^{\prime} \mathbf{q}_{\mathbf{1}}{ }^{\prime}$ is inclined at 45° to $\mathbf{X Y}$. Obtain final front view.
5. Project final top view from final front view and second top view. Note that $\mathbf{p}_{1} \mathbf{q}_{1}$ is parallel to XY.

Solved Problems - 11: A regular pentagonal lamina of 30 mm sides has one edge in HP and inclined at an angle of 30° to VP. Draw its projections whwn its surface is inclined at 45° to HP.

Figure - 17: Projection of planes.

> | Solved Problems -12: | A hexagonal lamina of 20 mm side rest on one of its corners on the |
| ---: | :--- |
| HP. The diagonal passing through this corner is inclined at 45° to | |
| the HP. The lamina is then rotated through 90° such that the top | |
| view of this diagonal is perpendicular to the VP and the surface is | |
| still inclined at 45° to the HP. Draw the projections of the lamina. | |

Figure - 18: Projection of planes.

Simple Position:

Assume the lamina to lie on HP with one of its diagonals AD parallel to VP. For this position, draw the first top view abcdef below XY. Project its corresponding first front view $\mathbf{a}^{\prime} \mathbf{d}^{\prime}$ on $\mathbf{X Y}$. Look at the first top view in the direction of arrow shown. Mark hidden corners in first front view.

Second Position:

Diagonal AD of the lamina is inclined at 45° to HP. Hence turn first front view a'd' about the corner a' through 45° to $\mathbf{X Y}$ to obtain the second front view a'd'. Project the corresponding second top view $\mathbf{a}_{\mathbf{1}} \mathbf{b}_{\mathbf{1}} \mathbf{c}_{\mathbf{1}} \mathbf{d}_{\mathbf{1}} \mathbf{e}_{\mathbf{1}} \mathbf{f}_{\mathbf{1}}$.

Final Position:

Then rotate the lamina through 90° such that the top view $\mathbf{a}_{1} \mathbf{d}_{\mathbf{1}}$ of the diagonal $\mathbf{A D}$ is perpendicular to VP. Hence redraw the second top view, turning it through 90° such that $\mathbf{a}_{\mathbf{1}} \mathbf{d}_{\mathbf{1}}$ is perpendicular to $\mathbf{X Y} . \mathbf{a}_{\mathbf{1}} \mathbf{b}_{\mathbf{1}} \mathbf{c}_{\mathbf{1}} \mathbf{d}_{\mathbf{1}} \mathbf{e}_{\mathbf{1}} \mathbf{f}_{\mathbf{1}}$ is the required final top view.

As per the given condition, diagonal AD of the lamina still makes 45° to the HP. So, from second front view draw horizontal lines and from the final top view draw the vertical projectors. Complete the final front view $\mathbf{a}_{\mathbf{1}}{ }^{\prime} \mathbf{b}_{\mathbf{1}}{ }^{\prime} \mathbf{c}_{\mathbf{1}}{ }^{\prime} \mathbf{d}_{\mathbf{1}}{ }^{\prime} \mathbf{e}_{\mathbf{1}}{ }^{\prime} \mathbf{f}_{\mathbf{1}}{ }^{\prime}$.

Solved Problems -13:	A hexagonal plate of 25 mm side is resting on HP such that one of
its corners touches both HP and VP. It makes 30° with HP and 60°	

Figure - 19: Projection of planes.

Figure - 20: Projection of plane

Solved Problems - 15: A semi-circular lamina of 64 mm diameter has its straight edge in $V P$ and inclined at an angle of 45° to HP. The surface of the lamina makes an angle of 30° with VP. Draw the projections.

Figure - 21: Projection of planes.

[^0]: Exercise - 1: Draw the projections for the following points
 a. Point A, 10 mm in-front of VP 45 mm above HP.
 b. Point B, on HP and 50 mm in-front of VP.
 c. Point C, 10 mm above HP and 25 mm behind VP.
 d. Point D, in VP and 35 mm below HP.
 e. Point E, 35 mm below HP and 30 mm behind VP.
 f. Point F, 45 mm away from the reference planes and is in the third quadrant.
 g. Point G, 50 mm below HP and 25 mm in-front of VP.
 h. Point H, 20 mm in below HP and in VP.

