

$$
\mathcal{U} \mathcal{N} I \mathcal{T}-1(a)
$$

$\operatorname{CONICSECTIONS}$

ENGINEERING CTIRVES (Week-2)

- Tfese are non-circular curves drawn by free fiand.
- Sufficient number of points are first located and then a smootf curve passing through them are drawn by freefiand or by using French Curve.
Examples
Conic Sections
Cycloids
Involutes, etc.,

Definition of Cone

- Alone is a surface generated by the rotation of a straight line whose one end is in contact with a fixed point while the other end is in contact with a closed curve, not lying in the plane of the curve.

- Apex or Vertex is the top point of the cone
- Axis is imaginary line joining apex centre of base
- Generator is the straight line which is generating the surface of the cone
- Base of the cone is the closed curve

CONIC SECTIONS
Definition
Conic sections are the curves obtained by the intersection of a right circular cone by a plane at different angles.

Circle, Ellipse, Parabola and Hyperbola are the curves thus obtained are called as conic sections or simply conics.

Conics defined by Section of a Cone

$\operatorname{CONICSECTIONS}$
Circle: Whentre cutting plane $\mathcal{A} \mathcal{A}$ is perpendicular to the axis and cuts all the generators, the section obtained is a circle.

Elfipse

- Whenthe cutting plane $\mathcal{B B}$ is inclined to the axis of the cone and cuts all the generators on one side of the apex, the section obtained is an Ellipse.

ELLIPSE

Parabola

- Whenthe cutting plane CC is inclined to the axis of the cone and parallel to one of the generators, the section obtained is a Parabola.

PARȦBOLA

Hyperbola

- When the cutting plane DD makes a smaller angle with the axis than that of the angle made by the generator of the cone, the section obtained is a Hyperbola.

HYPERBOLA

Eccentricity

Distance of the moving point from the focus
$e=$
Distance of the moving point from the directrix

Note
If the $e<1$, curve obtained is Ellipse
If the $e=1$, curve obtained is Parabola
If the $e>1$, curve obtained is Hyperbola

Conic Sections

Conics de finition

(By a locus of a Point)

- Ellipse: It is the locus of a point moving in a plane in such a way that the ratio of its distance from a fixed point (\mathcal{F}) to the fixed straight line (DD) is a constant. i.e., $e<1$.
- Parabola: It is the locus of a point moving in a plane in sucfi way that the ratio of its distance from a fixed point (\mathcal{F}) to the fixed straight line $(\mathcal{D D})$ is a constant. i.e., e $=1$.
- Hyperbola: It is the locus of a point moving in a plane in sucfi a way that the ratio of its distance 3Dim a fixed point (F) to the fixed straight line $(\mathcal{D D})$ is a constant.i.e., e>1.

Engine ering Applications

- Ellipse: Construction of arches, bridges, dams, ellipticalgears of textile macfines, etc.
- Parabola: Suspension bridges, reflectors for parallelbeams sucfias fiead ligfts of automobiles, solar concentrators etc.
- Hyperbola: Design of cooling towers, fydraulic cfinnels, electronic transmitters and receivers like radar antenna, etc.

Metrods of Construction

- Eccentricity Metfod (Ellipse/Parabola/Hyperbola)
- Intersecting Arcs or Arc of circles or Foci metriod (Ellipse)
- Rectangle or Oblongmetrod (Ellipse/Parabola)
- Paralle logrammetfod/Tangentmetfod (Parabola)
- Focierransverse Axis metrod (Hyperbola)

ELLIPSE-ECCENTRICITY METHOD

PROBLEM 1:

(a) Construct an ellipse when the distance between the focus and the directrix is 50 mm and the eccentricity is $2 / 3$.
(b) Draw the tangent and normal at any point P on the curve using directrix.

ELLIPS E BY ECCENIRICITY $\operatorname{METH} \mathcal{H} O$

- Problem

PARABOLAECCENTRICITY METHOD

PROBLEM 2:

Construct a parabola when the distance between focus and the directrix is 40 mm . Draw tangent and normal at any point P on your curve.

Parabola construction by Eccentricity metfod (Week-3)

PARABOLA - ECCENTRICITY METHOD

HYPERBOLAECCENTRICITY MECHOD

PROBLEM 3:

Construct a hyperbola when the distance between the focus and directrix is 70 mm . The eccentricity is $4 / 3$. Draw a tangent and normal at any point on the hyperbola.

Hyperbola by Eccentricity metfod

CYCLOIDS $\mathcal{A N D}$

 I NVOLUIES (Week-4) CYCLOIDIt is a curve traced by a point on the circumference of a circle which rolls along a straight line without slipping.
Engineering Applications:
Ulsed in small gears in instruments like dialgauges and watches.

CYCLOID

PROBLEM 4:

A coin of 40 mm diameter rolls over a horizontal table without slipping. A point on the circumference of the coin is in contact with the table surface in the beginning and after one complete revolution. Draw the path traced by the point.

Cycloid Construction

- Problem

Epicycloid

- Epicycloid is a curve generated by a point on the circumference of a circle which rolls without slipping on the outside of another circle.
- The fixed circle on the outside of which the generating circle rolls is called the Base circle or Directing circle.
- Engine ering Applications: In cycloidal teethgears, the faces are of Epicyloidal profile and the flanks are of Hypocycloidal profile to ensure correct mesfing.

EPICYCLOID

PROBLEM 5:

Draw an epicycloid of rolling circle 40 mm (2r), which rolls outside another circle (base circle) of 150 mm diameter (2 R) for one revolution.
Draw a tangent and normal at any point on the curve.

Construction of Epicycloid

- Problem

Hypocycloid

- Hypocycloid is a curve traced by a point on the circumference of a circle which rolls without slipping on the inside of another circle.
Note: i) The method for constructing Hypocycloid is the same as for Epicycloid.
ii) The center C of the generating circle is inside the directing circle.

HYPOCYLOID

PROBLEM 6:

Draw a hypocycloid of a circle of 40 mm diameter which rolls inside another circle of 200 mm diameter for one revolution.

Construction of

Hypocycloid

- Problem

I NVO LIITES (Wee k-5)

- Involute is a single-curved line traced out by an end of a string when unwound itself from straight line or a circle or a polygon, the string being always kept taut.
- Engine cering Applications: Casings of centrifugal pumps and Cams are of involute shape.

INVOLUTE OF A SQUARE

PROBLEM 7:

Draw the involute of a square of side 20 mm .
Draw a tangent and normal at any point M

Involute of a S quare

- Problem

Involute of a Pentagon

PROBLEM 8:
Construct the involute of a pentagon of 22 mm side.

Involute of a Pentagon

- Problem

INVOLUTE OF A PENTAGON

INVOLUTE OF CIRCLEUNWOUND PROBLEM
 PROBLEM 9:

A coir is unwound from a drum of 30 mm diameter. Draw the locus of the free end of the coir for unwinding through an angle of 360°.
Draw also a normal and tangent at any point on the curve. (UQ)

Involute of a Circle

- Problem

INVOLUTE OF A CIRCLE

INVOLUTE OF A CIRCLEWOUND PROBLEM

PROBLEM 10:

An inelastic string of length 100 mm is wound round a circle of 26 mm diameter. Draw the path traced by the end of the spring. (UQ)

END

